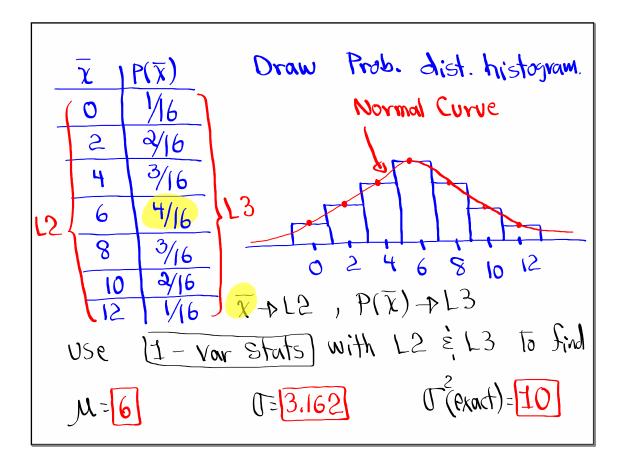
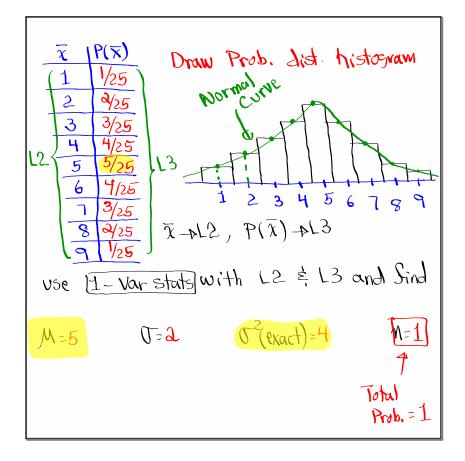


Consider a uniform Probadist. For all Values
from
$$(2 t_{0} + 0)$$

1) Draw & label clearly
 32
 32
 32
 3 Sind P(16<2<20)
 $1 = -0$
 32
 3 Sind P(16<2<20)
 $1 = -0$
 32
 $3 = -0.125$
 32
 32
 32
 33 Sind P(16<2<20)
 32
 32
 32
 32
 33 Sind P(16<2<20)
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 32
 3




Credit Scores are normally distributed with the mean of 725 and standard deviation of 50. N(725,50) Is we randomly select one person, find the prob. that his/her Credit Score is a) below 800. P(x < 800)= normalcalf(-E99,800,725,50) M=725 800 -E99 - [0933] 5=50 b) between 650 and 850. $P(650 < \chi < 850)$ = normal (650, 850, 725, 50)= , 927 M=725 850 650 5=50

Sind two Credit Scores that Separate the middle 90%. From the rest. Round to whole #. Middle 90%. 1 - 9 = 11-2=.05 .05 •05 901, 0f Credit Scores ove between 643 χ_2 M=725 X, 108 Jand 807 5-50 $\chi_1 = inv Norm(.05, 725, 50) \approx$ 643 $\chi_2 = \text{invNorm}(.95, 725, 50) \approx 807$ [SG 18 & SG 19]

Clear all lists. Reset all lists. Store 0,4,8 12 in L1. use (1-var stats) with L1 to find J=Jx=14.472 J(exact)=20 $\mu = \overline{\mathbf{x}} = \mathbf{6}$ Take all Samples of Size 2 from this List with replacement. 0,12 0,4 0,8 0,0 4,8 4,12 44 4,0 8,12 8,8 8,4 8,0 $\overline{\chi}$ $P(\overline{\chi})$ 12,8 12,12 H21 12,0 1/16 0 Sind \overline{X} of each sample. 2 2/16 0 2 4 6 3/16 4 2 4 6 8 4/16 6 16 means 8 3/16 4 6 8 10 2/16 10 8 10 12 1/16 12

Clear all lists.	
Store 1, 3, 5, 7, and 9 in 11	
use I-varstats with LI to find	
M=5 0= 2.828 02(e	exact)= 8
Take all Samples of Size 2 wi	th replacement
from this list.	
1,1 1,3 1,5 1,7 1,9	
3,1 3,3 3,5 3,7 3,9	
5,1 5,3 5,5 5,7 5,9	
1,1 7,3 7,5 7,1 7,9	$\overline{\chi}$ (P(\overline{x})
9,1 9,3 9,5 9,7 9,9	1 1/25
Now Sind I of each Sampl	
1 2 3 4 5	3 3/25
2 3 4 5 6 25	5 5/25
3 4 5 6 1 Marat	6 4/25
4 5 6 7 8	$\frac{73}{25}$ 8 $\frac{3}{25}$
56789	9 1/25

Suppose N(120, 10), Sor randomly
Selected groups of 4, Sind
P(110
$$\langle \bar{\chi} \langle 125 \rangle$$

= normalcols(110, 125, 120, 5)
= 819
 $100 \leq \chi = \frac{0}{\sqrt{\pi}} = \frac{10}{\sqrt{\pi}} = 5$

Exam Scores are normally dist. with [4=85] and 0=8. N=5IS we randomly select 5 exams, Sind the Prob. that their mean is above 80. $P(\bar{x} > 80)$ =normaled \$ (80, E99, 85, 8/5) $\frac{\overline{S}}{CLT} \begin{cases} M_{\overline{X}} = M = 85 \\ 0_{\overline{X}} = \frac{0}{2} = \frac{8}{2} \end{cases}$ - [919

for randomly selected groups of 3 exams Sind I that Separates the top 10/ Srow the rest. $\overline{\chi}$ = inu Norm (.9 ,85,8/J3) 9 = 90.919 $CLT \begin{cases} M_{\overline{\chi}} = M = 85 \\ M_{\overline{\chi}} = \frac{G}{1} = \frac{8}{10} \end{cases}$ $\approx |91|$

Class QZ 15
Consider a binomial Prob. List. with

$$n = 60$$
 and $P = .4$
1) Sind $P(x = a5) = binompdf(60, .4, 25) = .100$
a) Sind $P(x \le 30) = binomcdf(60, .4, 30) = .956$